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0. Introduction
Entanglement is one of the unique features of Quantum Mechanics in comparison to classical physics. Many of the novel phenomena and applications
that are found in Quantum Cryptography, Quantum Information, and Quantum Computing arise from the concept of entanglement (see [1]).

The present poster illustrates how entanglement is defined, and how it is usually quantified for 2-qubit and 3-qubit pure quantum states.

1. Definition of entanglement
Entanglement is defined for what it is not: a quantum state is entangled if it cannot be decomposed
as a tensor product for all parties (fully separable state). For a pure state |Ψ⟩, it is entangled if:

|Ψ⟩ ≠ |ψ1⟩ ⊗ |ψ2⟩ ⊗ ... ⊗ |ψN⟩ (1)

The definition of entanglement is clear, but it does not provide a measure of how much entanglement
there is in a given state. The quantification of entanglement in a multi-party scenario is not straightforward.
However, for bi-partite and tri-partite states, the situation has been well-studied.

2. The concurrence C
One of the possible quantities to quantify the
entanglement present in a 2-qubit state (bi-
partite) is the concurrence C. For a pure state
|ψ⟩:

C(|ψ⟩) =| ⟨ψ|σy ⊗ σy |ψ⟩| (2)

where σy is the Pauli matrix (also known as flip
matrix)

σy =
(

0 −i
i 0

)
The concurrence takes values between 0 and
1: 1 ≥ C ≥ 0.

For example, if the 2-qubit state is |ψ⟩ = a |00⟩+
b |01⟩ + c |10⟩ + d |11⟩ with a, b, c, d ∈ R and
a2 + b2 + c2 + d2 = 1 the concurrence takes a
very simple form:

C(|ψ⟩) = 2|ad − bc| (3)

▶ If ad = bc → c = ad
b (b ̸= 0), the state is fully

separable (no entanglement) |ψ⟩ = (b |0⟩ +
d |1⟩) ⊗ ( a

b |0⟩ + |1⟩) ⇒ C = 0

▶ If |ad −bc| = 1
2 , the state is maximally entan-

gled, e.g. |ψ⟩ = (|00⟩ + |11⟩)
√

2 ⇒ C = 1

C is related to the widely-known Von Neumann
entropy S (or entropy of formation) as:

S = h
(

1
2

+
1
2

√
1 − C2

)
(4)

where h is the binary Shannon entropy function
h(x) = −x log2 x − (1 − x) log2(1 − x).

Generally, if the state is represented by a den-
sity matrix ρAB, C(ρAB) can still be computed but
it has a more-complicated form than in (2) (see
next section with the tangle τ ).

3. The tangle τ

Related to the concurrence is the tangle τ . For a bi-partite state AB, it is defined as:

τAB = max( {
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4, 0} )2 (5)

where λi are the eigenvalues (in descending order) of the matrix ρAB ρ̃AB = ρAB(σy ⊗ σy )ρ∗AB(σy ⊗ σy )

The τ is just the square of the concurrence τAB(ρAB) = C(ρAB)2. It is also normalised to 1. Its use is
justified because it reveals an interesting feature when applied to a 3-qubit pure state ρABC = |Ψ⟩ ⟨Ψ|.
The τ satisfies the next inequality (see [2]):

τAB + τAC ≤ τA(BC) (6)

▶ τAB is the tangle of parties A and B. It is computed from ρAB = TrC(ρABC). Similar for τAC .
▶ τA(BC) is the amount of entanglement of party A with party BC. For a pure state, τA(BC) = 4Det(ρA).

Inequality (6) has important physical implications:

Party A sharing some entanglement with BC
constrains the amount of entanglement that
A can share individually with B and with C.

Equivalently, the more entangled parties A
and B are, the less entangled parties A and

C can be.

This constraint is known as the monogamy of entanglement

The 3-tangle τABC is defined as the difference between the rhs and the lhs in (6):

τABC = τA(BC) − τAB − τAC (7)

The value of τABC does not depend on the chosen party in the rhs of (7). In fact, τABC , up to
a constant, is the absolute value of the Cayley hyperdeterminant (invariant) of the 3-qubit state.
Thus, τABC is a good measure of the genuine 3-party entanglement present in a 3-qubit pure state.

3.0. Example of tangle computation
Figure 1 and 2 show the values of the τ for a GHZ-like state |Ψ⟩ = α |000⟩ +

√
1−|α|2 |111⟩ and a

W-like state |Ψ⟩ = β(|001⟩ + |010⟩) +
√

1 − 2|β|2 |100⟩ as a function of |α| and |β|, respectively.
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